Giúp mình phần d,f,k với
Share
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Please briefly explain why you feel this question should be reported.
Please briefly explain why you feel this answer should be reported.
Please briefly explain why you feel this user should be reported.
Hãy giúp đỡ người khác giải quyết rắc rối, và rắc rối của bạn sẽ biến mất.
$$\eqalign{
& d)\,\,y = {3 \over {{{\sin }^2}x – {{\cos }^2}x}} = – {3 \over {\cos 2x}} \cr
& DKXD:\,\,\cos 2x \ne 0 \Leftrightarrow 2x \ne {\pi \over 2} + k\pi \cr
& \Leftrightarrow x \ne {\pi \over 4} + {{k\pi } \over 2}\,\,\left( {k \in Z} \right) \cr
& \Rightarrow D = R\backslash \left\{ {{\pi \over 4} + {{k\pi } \over 2},\,k \in Z} \right\} \cr
& f)\,\,y = {2 \over {\cos x – \cos 3x}} \cr
& DKXD:\,\,\cos x \ne \cos 3x \Leftrightarrow \left[ \matrix{
3x \ne x + k2\pi \hfill \cr
3x \ne – x + k2\pi \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
2x \ne k2\pi \hfill \cr
4x \ne k2\pi \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x \ne k\pi \hfill \cr
x \ne {{k\pi } \over 2} \hfill \cr} \right. \Leftrightarrow x \ne {{k\pi } \over 2} \cr
& \Rightarrow D = R\backslash \left\{ {x \ne {{k\pi } \over 2};\,\,k \in Z} \right\} \cr
& k)\,\,y = \tan \left( {{\pi \over 2}\cos x} \right) \cr
& DKXD:\,\,{\pi \over 2}\cos x \ne {\pi \over 2} + k\pi \cr
& \Leftrightarrow \cos x \ne {1 \over 2} + k \cr
& TH1:\,\,\left| {{1 \over 2} + k} \right| > 1 \Leftrightarrow \left[ \matrix{
{1 \over 2} + k > 1 \hfill \cr
{1 \over 2} + k < - 1 \hfill \cr} \right. \cr & \Leftrightarrow \left[ \matrix{ k > {1 \over 2} \hfill \cr
k < - {3 \over 2} \hfill \cr} \right. \Rightarrow TXD:\,\,D = R \cr & TH2:\,\,\left| {{1 \over 2} + k} \right| \le 1 \Leftrightarrow \left\{ \matrix{ {1 \over 2} + k \le 1 \hfill \cr {1 \over 2} + k \ge - 1 \hfill \cr} \right. \cr & \Leftrightarrow \left\{ \matrix{ k \le {1 \over 2} \hfill \cr k \ge - {3 \over 2} \hfill \cr} \right. \Leftrightarrow - {3 \over 2} \le k \le {1 \over 2} \cr & \Rightarrow \cos x \ne {1 \over 2} + k \Rightarrow x \ne \pm \arccos \left( {{1 \over 2} + k} \right) + k2\pi \cr & \Rightarrow D = R\backslash \left\{ { \pm \arccos \left( {{1 \over 2} + k} \right) + k2\pi ;\,\,k \in Z} \right\} \cr} $$