Nếu muốn chứng minh đường trung trực của một tứ giác thì ta cần tìm những gì
Đáp án:
Giải thích các bưHướng 1: Lấy thêm đoạn thẳng mới để cùng với đoạn đã cho có chung trung điểm từ đó sử dụng tính chất hai đoạn thẳng có chung trung điểm ở lớp 7, hoặc tính chất của hình bình hành ở lớp 8.
Hướng 2: Lấy thêm trung điểm thứ hai để tạo ra đường trung bình trong tam giác, trong hình thang, trong tứ giác nếu có nhiều đường trung bình liền nhau càng tốt, từ đó sử dụng các tính chất của các đường trung bình này.
Hướng 3: Nếu trung điểm đó là trung điểm của cạnh huyền của tam giác vuông đăc biệt lại là cạnh huyền chung của nhiều tam giác vuông thì ta kẻ thêm các đường trung tuyến thuộc cạnh huyền này để sử dụng tính chất đường trung tuyến thuộc cạnh huyền trong tam giác vuông.
Hướng 4: Nếu trung điểm đó là trung điểm của dây cung của đường tròn thì ta kẻ ngay đường kính của đường tròn đi qua trung điểm đó để sử dụng tính chất của đường kính đi qua trung điểm của dây cung trong đường tròn.
Thầy Thăng đồng thời giới thiệu một số bài toán minh họa cho những kinh nghiệm mà tôi đã có được trong những năm trực tiếp làm nhiệm vụ giảng dạy và bồi dưỡng học sinh giỏi và cho biết: Trong chương trình toán 7 khi nghiên cứu các trường hợp bằng nhau của tam gíac để giúp học sinh nắm vững kỹ năng ,vận dụng thành thạo kiến thức ta giới thiệu cho học sinh các bài toán sau:ớc giải:
Đáp án:
Giải thích các bưHướng 1: Lấy thêm đoạn thẳng mới để cùng với đoạn đã cho có chung trung điểm từ đó sử dụng tính chất hai đoạn thẳng có chung trung điểm ở lớp 7, hoặc tính chất của hình bình hành ở lớp 8.
Hướng 2: Lấy thêm trung điểm thứ hai để tạo ra đường trung bình trong tam giác, trong hình thang, trong tứ giác nếu có nhiều đường trung bình liền nhau càng tốt, từ đó sử dụng các tính chất của các đường trung bình này.
Hướng 3: Nếu trung điểm đó là trung điểm của cạnh huyền của tam giác vuông đăc biệt lại là cạnh huyền chung của nhiều tam giác vuông thì ta kẻ thêm các đường trung tuyến thuộc cạnh huyền này để sử dụng tính chất đường trung tuyến thuộc cạnh huyền trong tam giác vuông.
Hướng 4: Nếu trung điểm đó là trung điểm của dây cung của đường tròn thì ta kẻ ngay đường kính của đường tròn đi qua trung điểm đó để sử dụng tính chất của đường kính đi qua trung điểm của dây cung trong đường tròn.
Thầy Thăng đồng thời giới thiệu một số bài toán minh họa cho những kinh nghiệm mà tôi đã có được trong những năm trực tiếp làm nhiệm vụ giảng dạy và bồi dưỡng học sinh giỏi và cho biết: Trong chương trình toán 7 khi nghiên cứu các trường hợp bằng nhau của tam gíac để giúp học sinh nắm vững kỹ năng ,vận dụng thành thạo kiến thức ta giới thiệu cho học sinh các bài toán sau:ớc giải: